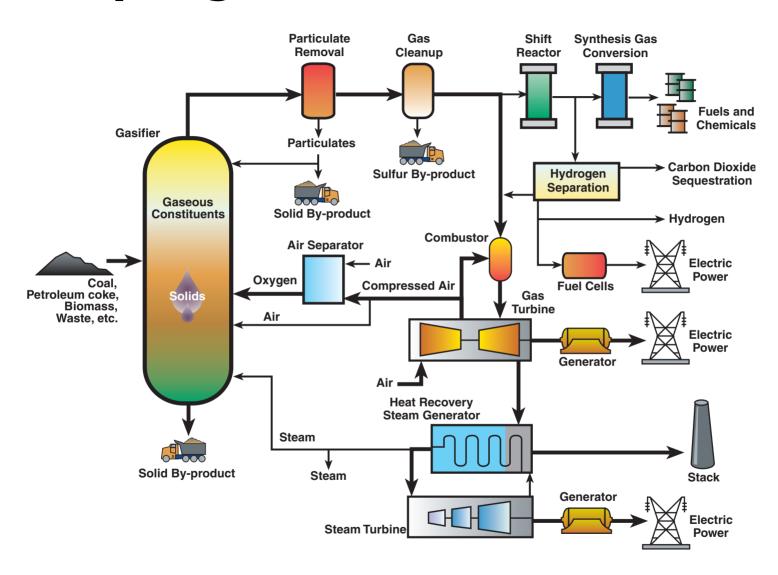
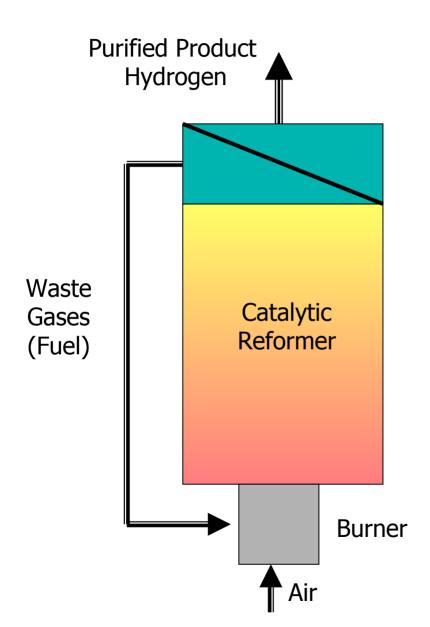
Hydrogen Separation and Purification Using Dense Metallic Membranes

DOE Hydrogen Separations Workshop September 8-9, 2004


> Dave Edlund, Ph.D. Senior Vice President, CTO IdaTech, LLC Bend, OR, USA (541) 383-3390

dedlund@idatech.com www.idatech.com

Candidate Commercial Applications


- H₂ production from fossil fuels and renewable fuels
 - H₂ refueling stations
 - Merchant H₂ markets
 - Fuel cell systems
- Hydrogen production from coal gasification (hot syngas cleanup)
- Membrane performance has been validated with steam reformers, partial oxidation reactors, autothermal reformers
 - Natural gas
 - LPG
 - Kerosene, diesel, bio-diesel, GTLs
 - Methanol
 - Ethanol

Hydrogen from Coal Gasification

Courtesy of Dr. Richard Killmeyer, NETL

Hydrogen from Reformate

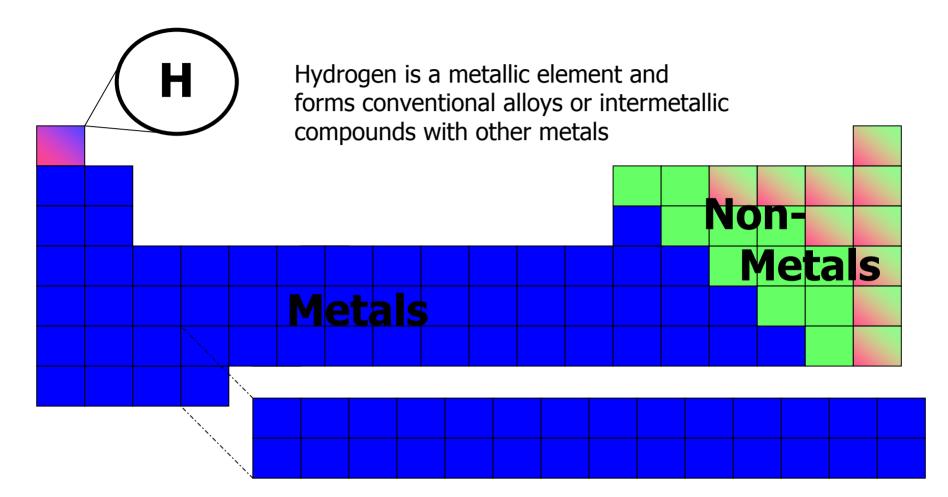
- Applicable to any carboncontaining fuel (hydrocarbon or alcohol)
- Steam reforming (externally heated) or ATR (internally heated)
- Membrane should operate in the range of 350°C to 600°C
- Reformate pressure >7 bara

High-Purity Hydrogen

- Solution-diffusion mechanism yields very high-purity permeate hydrogen
 - Selectivity for hydrogen is infinite (assuming no defects in membrane or module)
- Membrane quality can be an issue (defects, composition)
 - Dependent upon fabrication method
 - Also, support structure and composition may influence membrane quality
- Practically, purity is limited by means of module construction (for pin-hole-free membranes)
 - Seals are critical
 - Can add enormous cost to the finished membrane module

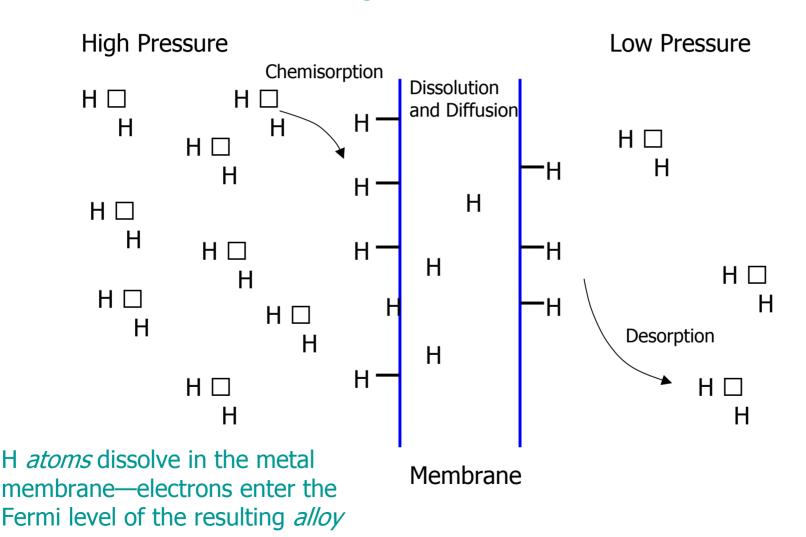
Non-Metal Membrane Hydrogen Purification Technology

- PSA (pressure-swing adsorption)
 - Multi-bed process (bulky, valves subject to failure, complex control)
 - Produces high-purity hydrogen (99.9% to 99.9999%)
 - Work-horse of petroleum refining and petrochemical industries
 - World-scale plants will produce 50 million SCFD hydrogen
 - Scales-up well (but does not scale down well)
- Shift reactors coupled with PrOX
 - Yields low-purity hydrogen (typically20% to 55%)
 - Converts CO to CO₂ by chemical reaction
 - Scales down well but bulky, expensive
 - Control is complex

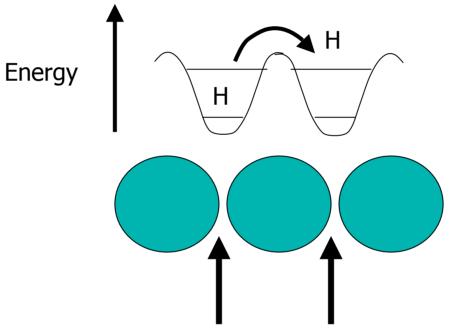

Why are Metal Membranes Commercially Attractive?

- Simple to operate
- Reliable (passive operation)
- No moving parts
- High-purity product hydrogen (typically exceeding 99.95%) independent of operating state
- Small size
- Flexible (many options for incorporating into an overall system)
- Cost effective solution

Candidate Metals for Hydrogen Separation


- Pure metals
 - Palladium, vanadium, tantalum, niobium, titanium
- Binary alloys of palladium
 - Pd-40Cu, Pd-23Ag, Pd-7Y, also Pd alloyed with Ni, Au, Ce, Fe
- Complex alloys
 - Pd alloyed with three to five other metals—expensive to fabricate and no clear advantage has been demonstrated
- Amorphous alloys (typically Group IV and Group V metals)
 - Stability has not been demonstrated (thermodynamics favors recrystalization
 - Kinetic stabilization—what is the effect of dissolved hydrogen and temperature?
- Coated metals
 - Pd over Ta, V, etc.
 - Stability is an issue (intermetallic diffusion)¹
- 1. Edlund, D.J., and J.M. McCarthy, The Relationship Between Intermetallic Diffusion and Flux Decline in Composite-Metal Membranes: Implications for Achieving Long Membrane Lifetime, J Membrane Science, 107(1995)147-153

Hydrogen-Metal Interaction



Hydrogen Permeation in *Metals*

Poisoning occurs when surface reactions are halted

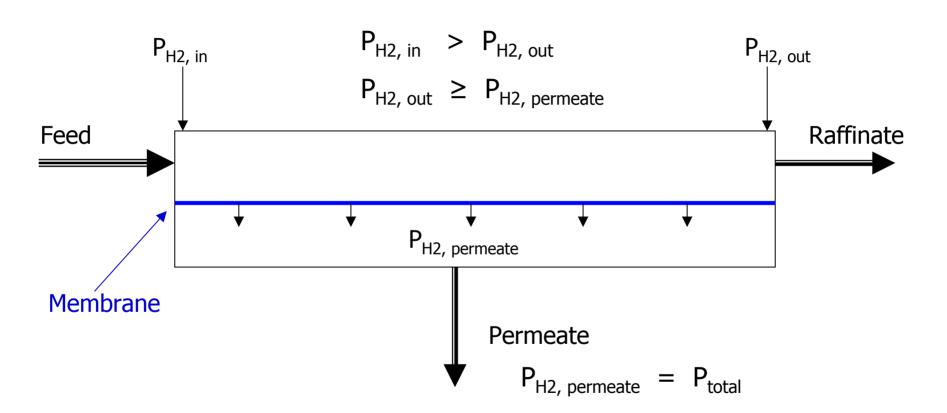
Hydrogen Permeation Mechanism

Activation energy for site hopping is dependent on many factors, including the *lattice structure* and *metal*.

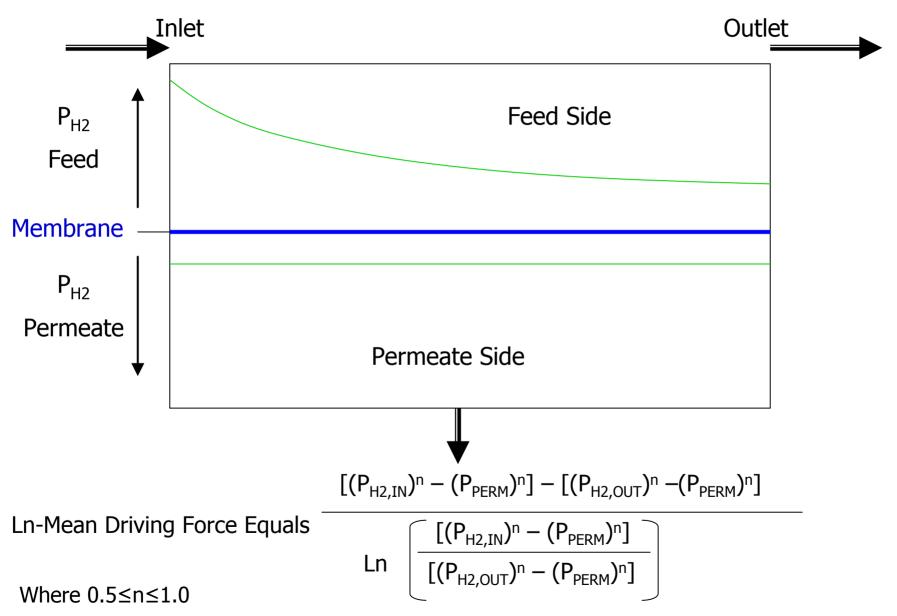
Interstitial Sites Occupied by H Atoms

Fukai, Y., and H. Sugimoto, *Diffusion of Hydrogen in Metals*, Advances in Physics, 34(1985)263-326

Hydrogen-Metal Systems are Dynamic


- Hydrogen is an additional alloying element
 - Modifies the electronic and physical properties of the host metal
 - Example: a Pd-23Ag membrane in operation is a ternary alloy of Pd, Ag, and H
- The metal membrane will be in contact with other compounds during operation, sometimes with adverse effects
 - Intermetallic diffusion will occur with support metals
 - Carbon contamination can lead to embrittlement (due to carbon dissolution)
 - Example: ethane dehydrogenation over Pd-23Ag at 700°C causes rapid failure of the membrane due to carbon dissolution and embrittlement
 - Poisoning due to non-reversibly surface adsorption of impurities (sulfur, phosphorous, volatile metals)
 - Not to be confused with reversible adsorption (e.g., CO)

Rules of Thumb when selecting an Alloy System


- Avoid alloys that form stable hydrides (intermetallic compounds) under anticipated operating conditions
 - A good metal-hydride storage alloy is not a good candidate for membrane applications
 - Critical temperature
- Open crystal structures are preferred
 - bcc yields higher diffusivity than fcc¹
- Avoid oxophillic metals (such as the Group III, IV and V metals)
 - Reaction with CO₂, H₂O, CO, hydrocarbons will lead to deterioration of the membrane

^{1.} Volkl, J., H.C. Bauer, U. Freudenberg, K. Kokkinidis, G. Lang, K.A. Steinhauser, and G. Alefeld, *Internal Friction and Ultrasonic Attenuation in Solids*, edited by R.R. Hasiguti and N. Mikoshiba, University of Tokyo Press, p.485 (1977)

P_{H2} is Important

Hydrogen Pressure Profile

Important Operating Parameters

$$P = DxS$$

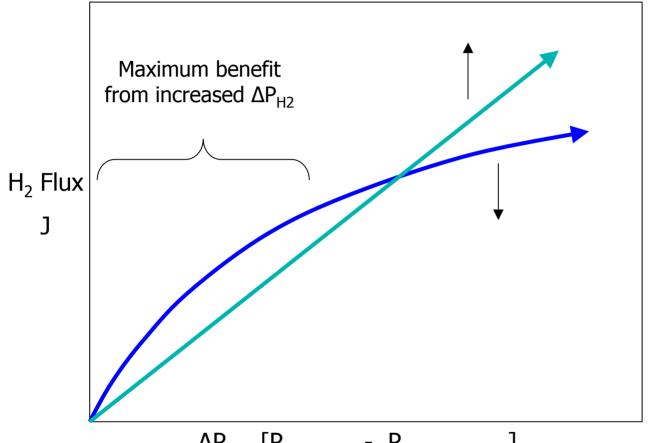
$$P = P_0 e^{-(Ea/RT)}$$

J = Permeate Flow Rate/A

$$J \propto (P \times (\Delta P_{H2})^n)/\ell$$

Where $0.5 \le n \le 1.0$

Glossary


- S Solubility of H atoms
- P Permeability of H atoms
- P₀ Permeability constant
- J Flux of hydrogen
- A Membrane area
- Membrane thickness
- ΔP_{H2} Hydrogen pressure differential
- T Operating temperature

	Increases Flux	Decreases Flux
Increasing D		
Increasing S		
Increasing T		
Increasing A		
Increasing {		
Increasing ΔP _{H2}		

Complex Pressure Dependence

$$\Delta P_{H2}$$
 [($P_{H2, FEED}$)ⁿ - ($P_{H2, PERMEATE}$)ⁿ]

0.5≤n≤1.0

 ΔP_{H2} [$P_{H2, FEED}$ - $P_{H2, PERMEATE}$]

Example Data

113 psia H_2 feed, J = 47

63 psia H_2 feed, J = 31

Permeate at 13 psia, J is cc/cm²·min

$$\sqrt{113} - \sqrt{13} = 7.0$$

$$\sqrt{63} - \sqrt{13} = 4.3$$

$$7.0/4.3 = 1.6$$

$$47/31 = 1.5$$

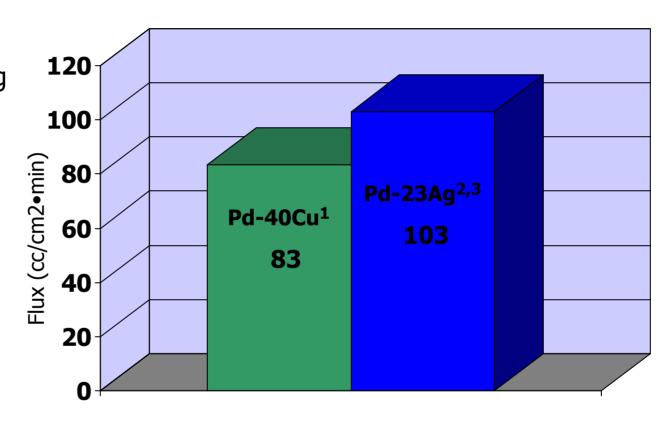
Membrane Module Design

Practical Considerations (Mechanical Engineering)

- Increasing T leads to heavier, more expensive membrane module
- Increasing ΔP_{H2} leads to heavier, more expensive membrane module; maybe higher operating costs (compression of feedstream)
- Very thin membranes are not durable, difficult to fabricate (increased cost)
- Increasing membrane area leads to higher costs

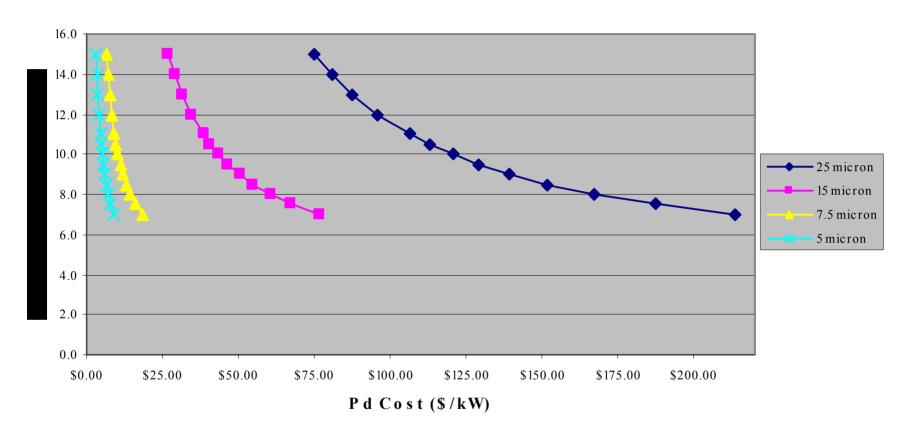
DoE's Stated Targets and Status

Characteristics	Units	2003 Status	DoE Target
Flux Rate	Std. cc/cm ² •min	30	100
riux nate	scfh/ft ²	60	200
Cost	\$/ft ²	150-200	<100
Durability	Hours	<1,000	100,000
Operating Temperature	°C	300-600	300-600
Parasitic Power	kWh/1,000 scfh	3.2	2.8


Binary Alloy Comparison

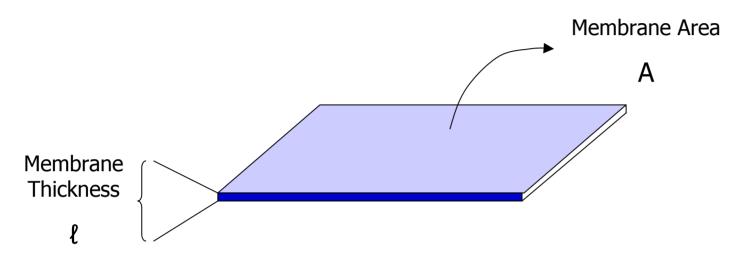
Characteristics	Units	Pd-40Cu	Pd-23Ag
Pd content	Weight %	60	77
Standard flux (25 µm thick) ¹	Std. cc H ₂ /cm ² •min	50 ²	79 ^{3,4}
Normalized flux ⁵	Std. cc H ₂ /cm ² •min	83	102
Embrittled by hydrogen	N/A	No	No
Poisoned by sulfur	N/A	No	Yes

- 1. Flux rate is measured at 115 psia pure hydrogen feed pressure, 15 psia permeate pressure, 400 °C, and using a 25-micron-thick membrane.
- 2. Experimentally measured by IdaTech.
- 3. Ali, J.K., J. Newson, and D.W.T. Rippin, "Deactivation and Regeneration of Pd-Ag Membranes for Dehydrogenation Reactions" J. Membrane Sci., 89(1994)171-184.
- 4. Ackerman, F.J., and G.J. Koshinas, "Permeation of Hydrogen and Deuterium Through Palladium-Silver Alloys" J. Chemical and Eng. Data, 17(1972)51-55.
- 5. Standard flux divided by weight-percentage of palladium.


Palladium-Normalized Flux Analysis

- Cost increases with Pd content (assuming easy to fabricate alloys)
- Normalize H₂ flux to Pd content
- Result provides meaningful basis for comparisons
- NOTE: Not all alloys are stable

- 1. Measured by IdaTech
- 2. J.K. Ali, E.J. Newson, D.W.T. Rippin "Deactivation and Regeneration of Pd-Ag Membranes for Dehydrogenation Reactions" J. Membrane Sci. 89(1994)171-184
- 3. F.J. Ackerman, G.J. Koskinas "Permeation of Hydrogen and Deuterium Through Palladium-Silver Alloys" J. Chemical and Eng. Data 17(1972)51-55


Palladium Membrane Cost Analysis

Basis: 53% H₂ in feed, 1.25 bara permeate, \$350/oz Pd, 70% H₂ recovery

NOTE: \$/kW is equivalent to \$/12 sLm H₂

Why is Membrane Thickness So Important?

Assume membrane thickness is reduced by 3x (e.g., 25 µm to 8 µm)

For $\ell = 25 \mu m$, H₂ flux = J

For $\ell = 8 \mu m$, H₂ flux = J/0.33 or 3J

Then, to maintain constant H₂ flow rate, only need 1/3 of the original membrane area A

So, Pd content is reduced to 0.33×0.33 or 0.11 of original amount. . . This is a **9-fold reduction** in the Pd requirement!!!

Various Fabrication Methods

Method	Pros	Cons	
	Common, high-volume fabrication method.	Not easily adapted to small samples.	
Rolling	Excellent quality can be obtained.	Quality is controlled by metallurgy of the billet.	
	Thickness ≥2 microns.	Long process lead time.	
Vapor Deposition	Can yield <2 micron films. Easily adapted to small	Generally poor quality (difficult to avoid pin holes, contamination).	
Solution Plating	samples. Quick turn around.	Generally applied to a support, may limit flexibility.	

Two Physical Designs Classes

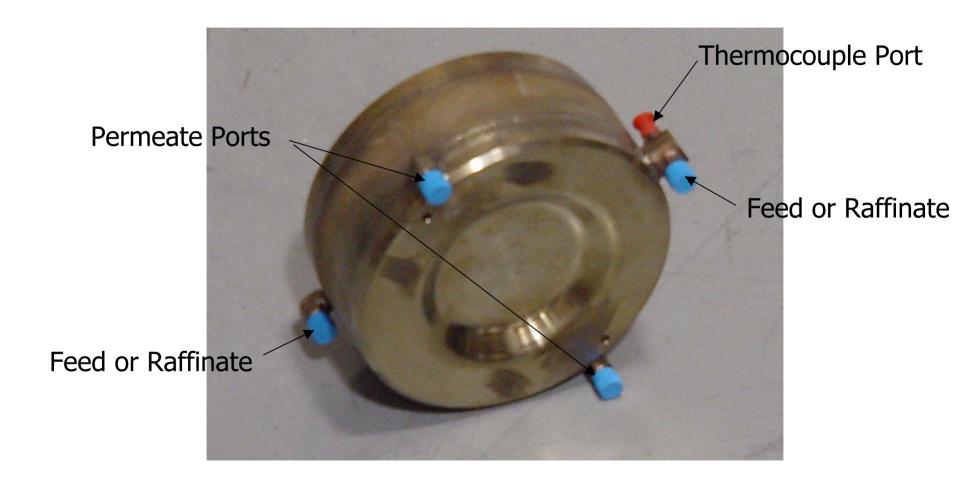
Tubular

- Typically small-diameter tube, maybe 100-150 μm O.D. with a 25-50 μm wall thickness
- Welded or brazed to a header
- Often several meters in length
- Inside feed » best combination of strength and low mass transfer resistance
- Low packing density (membrane area per unit of volume)

Planar

- Typically thin foils » mechanical support is required to have any degree of mechanical strength
- Seals can be achieved by gaskets, brazing, or welding
- High packing density

A Binary Palladium Alloy Foil



- 5 microns thick, pin-hole free
- Pd-40Cu alloy: this alloy exhibits remarkable tolerance to sulfur^{1,2}
- Fabricated by conventional rolling
- Approximately 10 cm x 10 cm, fabricated as continuous roll

- Edlund, D., A Membrane Reactor for H₂S Decomposition, Department of Energy Contract #DE-FG03-92ER81419, paper presented at the Advanced Coal-Fired Power Systems '96 Review Meeting, Morgantown, WV (July 16-18, 1996)
- Morreale, B.D., M.V. Ciocco, B.H. Howard, R.P. Killmeyer, A.V. Cugini, and R.M. Enick, *Effect of Hydrogen-Sulfide on the Hydrogen Permeance of Palladium-Copper Alloys at Elevated Temperatures*, J Membrane Science, 241(2004)219-224 and references therein

Example of a Planar Membrane Purifier

Lifetime >35,000 hours has been demonstrated

Technological Limitations

- Requires narrow range of operating temperature with most feed streams (about 350°C-550°C)
 - Low temperatures and high temperatures are problematic
- Relatively large ΔP is required
 - Remember, it is hydrogen partial pressure that governs performance
- Feed stream contaminants <u>may</u> be a concern
 - "Poisons" such as sulfur compounds, heavy metals, etc.
 will also poison catalysts in upstream unit operations
 - But coal-derived syngas may have particulates and sulfur compounds (prior to shift reactors)

<u>Current Activities in Metal Membrane</u> <u>Technology</u>

- Commercial/Pre-commercial Products
 - Electrolyzers (purification of product hydrogen: Proton Energy Systems, Parker, Matheson)
 - Compact fuel processors for fuel-cell systems (purification of hydrogen from reformate: IdaTech, Genesis Fueltech, MesoFuel, InnovaTek)
 - Stand-alone hydrogen generators (purification of hydrogen from reformate: IdaTech)
- Research and Development
 - USA: NETL, Colorado School of Mines, Tufts University, INEEL, SwRI, Hy9, Power & Energy, Worcester Polytechnic Institute
 - Japan: Fukuda Metals, Tokyo Inst. Of Techn., Nikko Materials, Mistubishi Materials, Nissan, Toyota, Tokyo Gas
 - Europe: University of Twente, W.C. Heraeus

Challenges and Opportunities

Cost Reduction is the Name of the Game

- Capital Cost: Reduce membrane thickness to ≤12 microns
 - Achieve acceptable manufacturing yields of the membrane
 - Develop robust and affordable membrane module designs
- Operating Cost: Demonstrate durability
 - Long-term testing: is crystal structure stable? Creep? Other metallurgical changes?
 - Membrane-support interactions?
 - Discovery new alloys that broaden range of operating temperature (lower and higher)

Questions & Answers